(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

f(0) → 0
f(s(0)) → s(0)
f(s(s(x))) → p(h(g(x)))
g(0) → pair(s(0), s(0))
g(s(x)) → h(g(x))
h(x) → pair(+(p(x), q(x)), p(x))
p(pair(x, y)) → x
q(pair(x, y)) → y
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
f(s(s(x))) → +(p(g(x)), q(g(x)))
g(s(x)) → pair(+(p(g(x)), q(g(x))), p(g(x)))

Rewrite Strategy: FULL

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

f(0') → 0'
f(s(0')) → s(0')
f(s(s(x))) → p(h(g(x)))
g(0') → pair(s(0'), s(0'))
g(s(x)) → h(g(x))
h(x) → pair(+'(p(x), q(x)), p(x))
p(pair(x, y)) → x
q(pair(x, y)) → y
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
f(s(s(x))) → +'(p(g(x)), q(g(x)))
g(s(x)) → pair(+'(p(g(x)), q(g(x))), p(g(x)))

S is empty.
Rewrite Strategy: FULL

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

TRS:
Rules:
f(0') → 0'
f(s(0')) → s(0')
f(s(s(x))) → p(h(g(x)))
g(0') → pair(s(0'), s(0'))
g(s(x)) → h(g(x))
h(x) → pair(+'(p(x), q(x)), p(x))
p(pair(x, y)) → x
q(pair(x, y)) → y
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
f(s(s(x))) → +'(p(g(x)), q(g(x)))
g(s(x)) → pair(+'(p(g(x)), q(g(x))), p(g(x)))

Types:
f :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: pair → 0':s
h :: pair → pair
g :: 0':s → pair
pair :: 0':s → 0':s → pair
+' :: 0':s → 0':s → 0':s
q :: pair → 0':s
hole_0':s1_0 :: 0':s
hole_pair2_0 :: pair
gen_0':s3_0 :: Nat → 0':s

(5) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
g, +'

They will be analysed ascendingly in the following order:
+' < g

(6) Obligation:

TRS:
Rules:
f(0') → 0'
f(s(0')) → s(0')
f(s(s(x))) → p(h(g(x)))
g(0') → pair(s(0'), s(0'))
g(s(x)) → h(g(x))
h(x) → pair(+'(p(x), q(x)), p(x))
p(pair(x, y)) → x
q(pair(x, y)) → y
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
f(s(s(x))) → +'(p(g(x)), q(g(x)))
g(s(x)) → pair(+'(p(g(x)), q(g(x))), p(g(x)))

Types:
f :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: pair → 0':s
h :: pair → pair
g :: 0':s → pair
pair :: 0':s → 0':s → pair
+' :: 0':s → 0':s → 0':s
q :: pair → 0':s
hole_0':s1_0 :: 0':s
hole_pair2_0 :: pair
gen_0':s3_0 :: Nat → 0':s

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

The following defined symbols remain to be analysed:
+', g

They will be analysed ascendingly in the following order:
+' < g

(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
+'(gen_0':s3_0(a), gen_0':s3_0(n5_0)) → gen_0':s3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)

Induction Base:
+'(gen_0':s3_0(a), gen_0':s3_0(0)) →RΩ(1)
gen_0':s3_0(a)

Induction Step:
+'(gen_0':s3_0(a), gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
s(+'(gen_0':s3_0(a), gen_0':s3_0(n5_0))) →IH
s(gen_0':s3_0(+(a, c6_0)))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(8) Complex Obligation (BEST)

(9) Obligation:

TRS:
Rules:
f(0') → 0'
f(s(0')) → s(0')
f(s(s(x))) → p(h(g(x)))
g(0') → pair(s(0'), s(0'))
g(s(x)) → h(g(x))
h(x) → pair(+'(p(x), q(x)), p(x))
p(pair(x, y)) → x
q(pair(x, y)) → y
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
f(s(s(x))) → +'(p(g(x)), q(g(x)))
g(s(x)) → pair(+'(p(g(x)), q(g(x))), p(g(x)))

Types:
f :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: pair → 0':s
h :: pair → pair
g :: 0':s → pair
pair :: 0':s → 0':s → pair
+' :: 0':s → 0':s → 0':s
q :: pair → 0':s
hole_0':s1_0 :: 0':s
hole_pair2_0 :: pair
gen_0':s3_0 :: Nat → 0':s

Lemmas:
+'(gen_0':s3_0(a), gen_0':s3_0(n5_0)) → gen_0':s3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

The following defined symbols remain to be analysed:
g

(10) RewriteLemmaProof (EQUIVALENT transformation)

Proved the following rewrite lemma:
g(gen_0':s3_0(+(1, n548_0))) → *4_0, rt ∈ Ω(3n)

Induction Base:
g(gen_0':s3_0(+(1, 0)))

Induction Step:
g(gen_0':s3_0(+(1, +(n548_0, 1)))) →RΩ(1)
pair(+'(p(g(gen_0':s3_0(+(1, n548_0)))), q(g(gen_0':s3_0(+(1, n548_0))))), p(g(gen_0':s3_0(+(1, n548_0))))) →IH
pair(+'(p(*4_0), q(g(gen_0':s3_0(+(1, n548_0))))), p(g(gen_0':s3_0(+(1, n548_0))))) →IH
pair(+'(p(*4_0), q(*4_0)), p(g(gen_0':s3_0(+(1, n548_0))))) →IH
pair(+'(p(*4_0), q(*4_0)), p(*4_0))

We have rt ∈ Ω(3n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(3n)

(11) BOUNDS(3^n, INF)

(12) Obligation:

TRS:
Rules:
f(0') → 0'
f(s(0')) → s(0')
f(s(s(x))) → p(h(g(x)))
g(0') → pair(s(0'), s(0'))
g(s(x)) → h(g(x))
h(x) → pair(+'(p(x), q(x)), p(x))
p(pair(x, y)) → x
q(pair(x, y)) → y
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
f(s(s(x))) → +'(p(g(x)), q(g(x)))
g(s(x)) → pair(+'(p(g(x)), q(g(x))), p(g(x)))

Types:
f :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: pair → 0':s
h :: pair → pair
g :: 0':s → pair
pair :: 0':s → 0':s → pair
+' :: 0':s → 0':s → 0':s
q :: pair → 0':s
hole_0':s1_0 :: 0':s
hole_pair2_0 :: pair
gen_0':s3_0 :: Nat → 0':s

Lemmas:
+'(gen_0':s3_0(a), gen_0':s3_0(n5_0)) → gen_0':s3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

No more defined symbols left to analyse.

(13) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':s3_0(a), gen_0':s3_0(n5_0)) → gen_0':s3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)

(14) BOUNDS(n^1, INF)